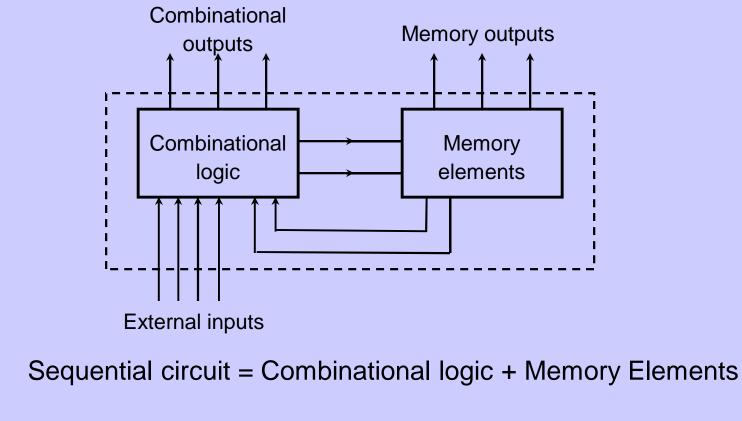
Sequential Logic Latches & Flip-flops

- Introduction
- Memory Elements
- Pulse-Triggered Latch
 - ✤ <u>S-R Latch</u>
 - ✤ Gated S-R Latch
 - ✤ Gated D Latch
- Edge-Triggered Flip-flops
 - ✤ <u>S-R Flip-flop</u>
 - ✤ <u>D Flip-flop</u>
 - ✤ J-K Flip-flop
 - ✤ <u>T Flip-flop</u>
- Asynchronous Inputs

EE-204 F


Sequential Logic: Latches & Flipflops

1

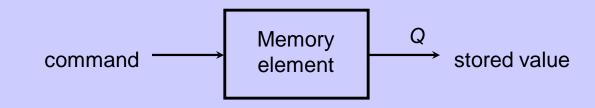
Introduction

A sequential circuit consists of a feedback path, and employs some memory elements.

Sequential Logic: Latches & Flipflops

EE-204 F

Introduction


- There are two types of sequential circuits:
 - synchronous: outputs change only at specific time
 - * asynchronous: outputs change at any time
- Multivibrator. a class of sequential circuits. They can be:
 - bistable (2 stable states)
 - monostable or one-shot (1 stable state)
 - stable (no stable state)

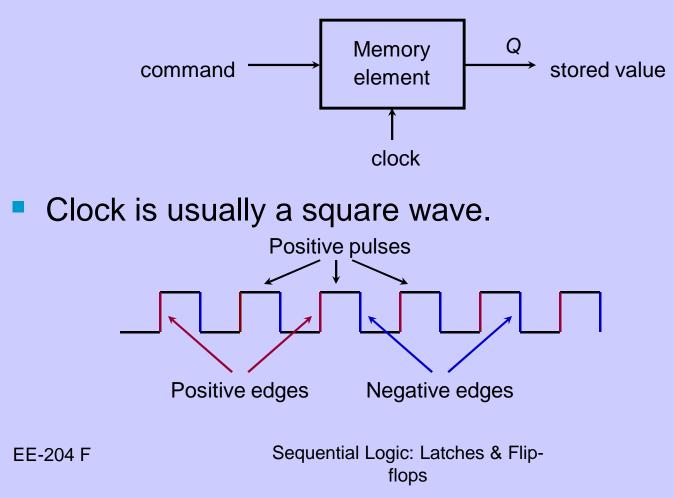
- Bistable logic devices: *latches* and *flip-flops*.
- Latches and flip-flops differ in the method used for changing their state.

Memory Elements

 Memory element: a device which can remember value indefinitely, or change value on command from its inputs.

Characteristic table:

\square
\bigtriangleup
\bigtriangledown


Q(t)	Q(t+1)
Х	1
Х	0
0	0
1	1
	X X X

Q(t): current state Q(t+1) or Q^+ : next state

EE-204 F

Memory Elements

Memory element with clock. Flip-flops are memory elements that change state on clock signals.

Memory Elements

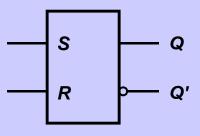
- Two types of triggering/activation:
 - pulse-triggered
 - edge-triggered
- Pulse-triggered
 - Iatches
 - ✤ ON = 1, OFF = 0
- Edge-triggered
 - flip-flops
 - positive edge-triggered (ON = from 0 to 1; OFF = other time)
 - negative edge-triggered (ON = from 1 to 0; OFF = other time)

- Complementary outputs: Q and Q'.
- When Q is HIGH, the latch is in SET state.
- When Q is LOW, the latch is in RESET state.
- For active-HIGH input S-R latch (also known as NOR gate latch),

R=HIGH (and S=LOW) a RESET stateS=HIGH (and R=LOW) a SET stateboth inputs LOW a no changeboth inputs HIGH a Q and Q' both LOW (invalid)!

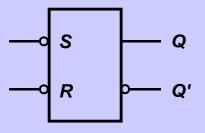
For active-LOW input S-R latch (also known as NAND gate latch),

R'=LOW (and S'=HIGH) a RESET state
S'=LOW (and R'=HIGH) a SET state
both inputs HIGH a no change
both inputs LOW a Q and Q' both HIGH (invalid)!

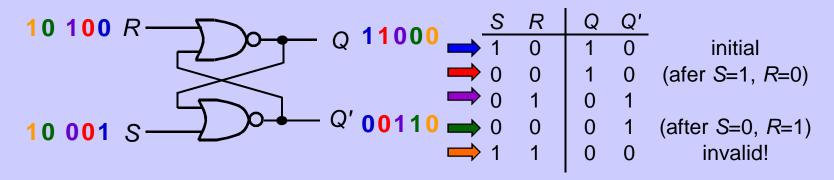

 Drawback of S-R latch: invalid condition exists and must be avoided.

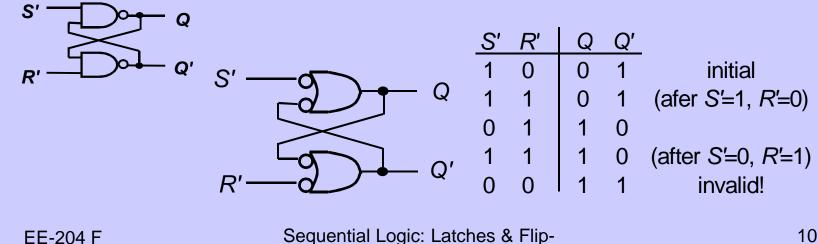
EE-204 F

Characteristics table for active-high input S-R latch:


S	R	Q	Q'	
0	0	NC	NC	No change. Latch remained in present state.
1	0	1	0	Latch SET.
0	1	0	1	Latch RESET.
1	1	0	0	Invalid condition.

Characteristics table for active-low input S'-R' latch:

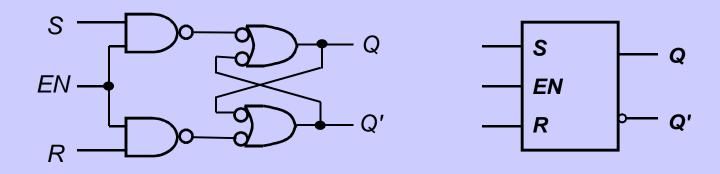

S'	R'	Q	Q'	
1	1	NC	NC	No change. Latch remained in present state.
0	1	1	0	Latch SET.
1	0	0	1	Latch RESET.
0	0	1	1	Invalid condition.


EE-204 F

Sequential Logic: Latches & Flipflops 9

Active-HIGH input S-R latch

Active-LOW input S-R latch



Sequential Logic: Latches & Flipflops

10

Gated S-R Latch

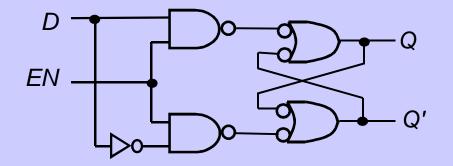
■ S-R latch + enable input (EN) and 2 NAND gates \rightarrow gated S-R latch.

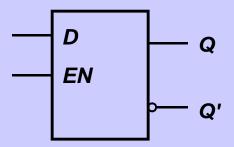
EE-204 F

Gated S-R Latch

- Outputs change (if necessary) only when EN is HIGH.
- Under what condition does the invalid state occur?
- Characteristic table:

EN	=1								
	Q (t)	S	R	Q(t+1)	-	S	R	Q(t+1)	
-	0	0	0	0		0	0	Q(t)	No change
	0	0	1	0		0	1	0	Reset
	0	1	0	1		1	0	1	Set
-	0	1	1	indeterminate		1	1	indeterminate	•••
	1	0	0	1	-	•	•	indeterminate	
	1	0	1	0			(Q(t+1) = S + R'.	Q
	1	1	0	1	. ,				~
	1	1	1	indeterminate			2	S.R = 0	


EE-204 F


Sequential Logic: Latches & Flip-

flops

Gated D Latch

- Make R input equal to $S' \rightarrow gated D$ latch.
- D latch eliminates the undesirable condition of invalid state in the S-R latch.

EE-204 F

Gated D Latch

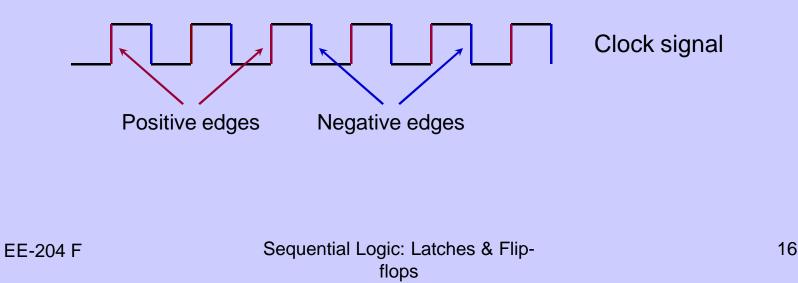
- When *EN* is HIGH,
 - ♦ D=HIGH \rightarrow latch is SET
 - ♦ D=LOW → latch is RESET
- Hence when EN is HIGH, Q 'follows' the D (data) input.
- Characteristic table:

EN	D	Q(t+1)	
1	0	0	Reset
1	1	1	Set
0	Χ	Q(t)	No change

When EN=1, Q(t+1) = D

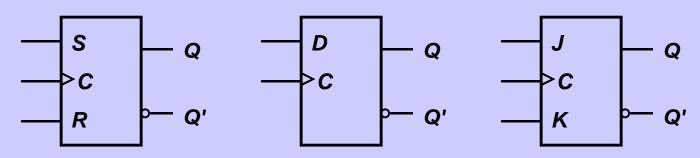
EE-204 F

 \bigvee

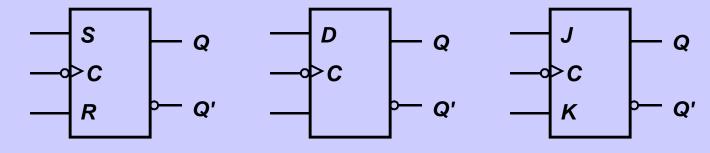

Latch Circuits: Not Suitable

- Latch circuits are not suitable in synchronous logic circuits.
- When the enable signal is active, the excitation inputs are gated directly to the output Q. Thus, any change in the excitation input immediately causes a change in the latch output.
- The problem is solved by using a special timing control signal called a *clock* to restrict the times at which the states of the memory elements may change.
- This leads us to the edge-triggered memory elements called *flip-flops*.

EE-204 F


Edge-Triggered Flip-flops

- Flip-flops: synchronous bistable devices
- Output changes state at a specified point on a triggering input called the *clock*.
- Change state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock signal.



Edge-Triggered Flip-flops

S-R, D and J-K edge-triggered flip-flops. Note the ">" symbol at the clock input.

Positive edge-triggered flip-flops

Negative edge-triggered flip-flops

S-R Flip-flop

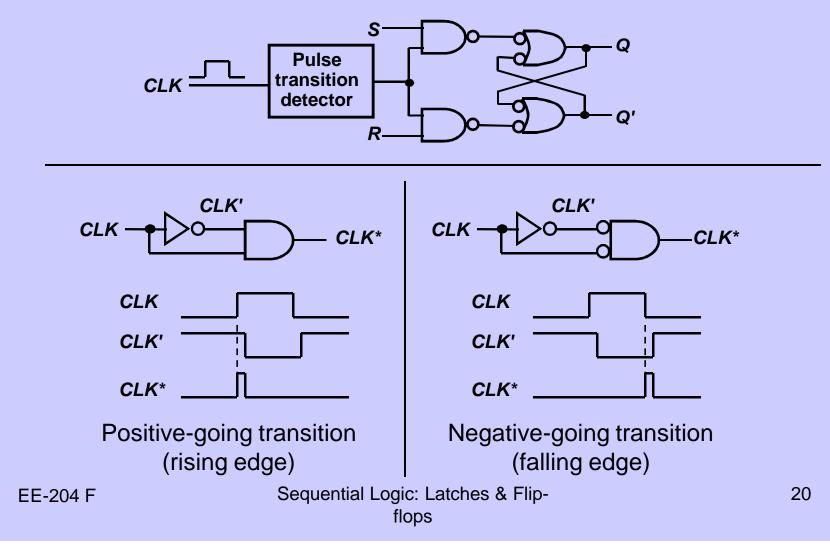
- S-R flip-flop: on the triggering edge of the clock pulse,
 - ✤ S=HIGH (and R=LOW) a SET state
 - ✤ R=HIGH (and S=LOW) a RESET state
 - both inputs LOW a no change
 - both inputs HIGH a invalid
- Characteristic table of positive edge-triggered S-R flip-flop:

S	R	CLK	Q(t+1)	Comments
0	0	Х	Q(t)	No change
0	1	↑	0	Reset
1	0	1	1	Set
1	1	\uparrow	?	Invalid

X = irrelevant ("don't care")

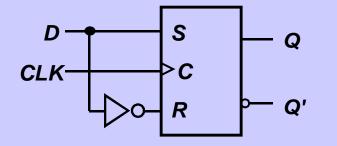
 \uparrow = clock transition LOW to HIGH

S-R Flip-flop


- It comprises 3 parts:
 - ✤ a basic NAND latch
 - ✤ a pulse-steering circuit
 - ✤ a pulse transition detector (or edge detector) circuit
- The pulse transition detector detects a rising (or falling) edge and produces a very short-duration spike.

EE-204 F

S-R Flip-flop


The pulse transition detector.

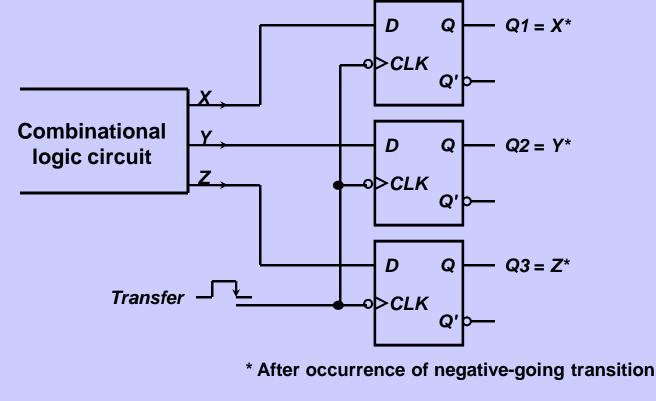
D Flip-flop

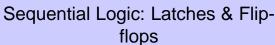
D flip-flop: single input D (data)

- D=HIGH a SET state
- ✤ D=LOW a RESET state
- Q follows D at the clock edge.
- Convert S-R flip-flop into a D flip-flop: add an inverter.

DCLKQ(t+1)Comments1 \uparrow 1Set0 \uparrow 0Reset

 \uparrow = clock transition LOW to HIGH

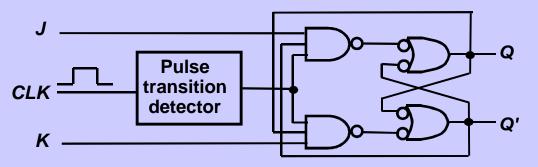



A positive edge-triggered D flipflop formed with an S-R flip-flop.

EE-204 F

D Flip-flop


Application: Parallel data transfer.
 To transfer logic-circuit outputs X, Y, Z to flip-flops Q₁, Q₂ and Q₃ for storage.

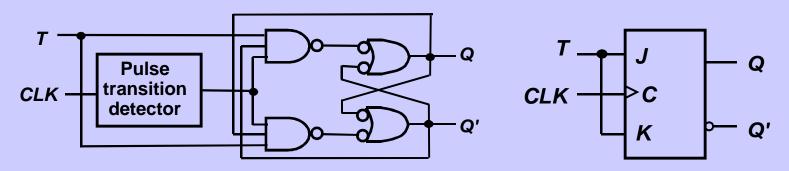

J-K Flip-flop

- J-K flip-flop: Q and Q' are fed back to the pulsesteering NAND gates.
- No invalid state.
- Include a *toggle* state.
 - ✤ J=HIGH (and K=LOW) a SET state
 - ✤ K=HIGH (and J=LOW) a RESET state
 - both inputs LOW a no change
 - both inputs HIGH a toggle

J-K Flip-flop

J-K flip-flop.

Characteristic table.


J	Κ	CLK	Q(t+1)	Comments
0	0	1	Q(t)	No change
0	1	1	0	Reset
1	0	1	1	Set
1	1	1	Q(t)'	Toggle

$$Q(t+1) = J.Q' + K'.Q$$

EE-204 F

T Flip-flop

T flip-flop: single-input version of the J-K flip flop, formed by tying both inputs together.

Characteristic table.

T	CLK	Q(t+1)	Comments	
0	1	Q(t)	No change	
1	↑	Q(t)'	Toggle	C
				1

Q	Τ	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Q(t+1) = T.Q' + T'.Q

EE-204 F

T Flip-flop

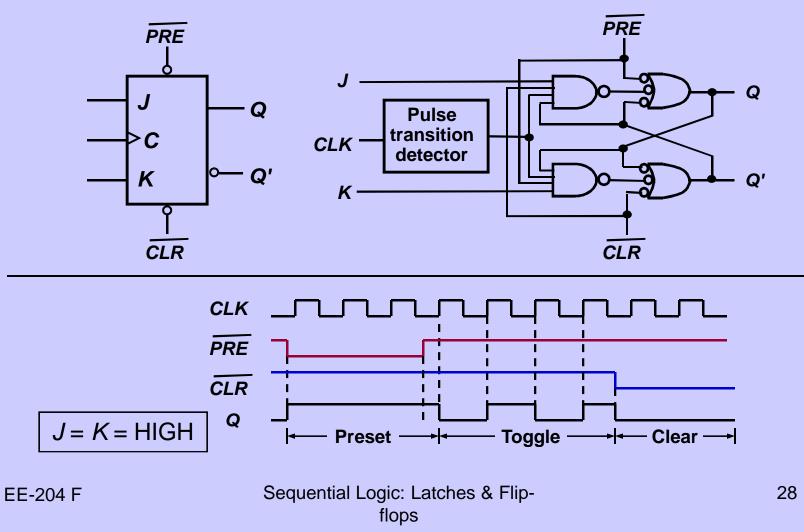
Application: Frequency division.



Application: Counter (to be covered in Lecture 13.)

EE-204 F

Asynchronous Inputs


- S-R, D and J-K inputs are synchronous inputs, as data on these inputs are transferred to the flip-flop's output only on the triggered edge of the clock pulse.
- Asynchronous inputs affect the state of the flip-flop independent of the clock; example: preset (PRE) and clear (CLR) [or direct set (SD) and direct reset (RD)]
- When PRE=HIGH, Q is immediately set to HIGH.
- When *CLR*=HIGH, *Q* is immediately cleared to LOW.
- Flip-flop in normal operation mode when both PRE and CLR are LOW.

EE-204 F

Asynchronous Inputs

A J-K flip-flop with active-LOW preset and clear inputs.

Assignment

Q.1 Remember the Characteristic table of all Flip flops. Q. 2 Explain SR Latch ?

EE-204 F